Gradient Entropy Estimate and Convergence of a Semi-Explicit Scheme for Diagonal Hyperbolic Systems

نویسندگان

  • Laurent Monasse
  • Régis Monneau
چکیده

In this paper, we consider diagonal hyperbolic systems with monotone continuous initial data. We propose a natural semi-explicit and upwind first order scheme. Under a certain non-negativity condition on the Jacobian matrix of the velocities of the system, there is a gradient entropy estimate for the hyperbolic system. We show that our scheme enjoys a similar gradient entropy estimate at the discrete level. This property allows us to prove the convergence of the scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Continuous Solutions for Diagonal Hyperbolic Systems with Large and Monotone Data

In this paper, we study diagonal hyperbolic systems in one space dimension. Based on a new gradient entropy estimate, we prove the global existence of a continuous solution, for large and non-decreasing initial data. We remark that these results cover the case of systems which are hyperbolic but not strictly hyperbolic. Physically, this kind of diagonal hyperbolic system appears naturally in th...

متن کامل

On some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces

In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...

متن کامل

Investigation of Fluid-structure Interaction by Explicit Central Finite Difference Methods

Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces; cause vibrations in the pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing equations of this phenomenon include a system of first order hyperbolic partial differen...

متن کامل

High-Order Accurate, Fully Discrete Entropy Stable Schemes for Scalar Conservation Laws

The recently developed TECNO schemes for hyperbolic conservation laws are designed to be high-order accurate and entropy stable, but are, as of yet, only semi-discrete. We perform an explicit discretization of the temporal derivative to obtain a fully discrete scheme, and derive a non-strict CFL condition that ensures global entropy stability. The scheme is tested in a series of numerical exper...

متن کامل

Adaptive Semidiscrete Central-Upwind Schemes for Nonconvex Hyperbolic Conservation Laws

We discover that the choice of a piecewise polynomial reconstruction is crucial in computing solutions of nonconvex hyperbolic (systems of) conservation laws. Using semi-discrete central-upwind schemes we illustrate that the obtained numerical approximations may fail to converge to the unique entropy solution or the convergence may be so slow that achieving a proper resolution would require the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2014